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Identification of nonlinear spatiotemporal systems via partitioned filtering
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The problem of identifying continuous spatiotemporal nonlinear systems from noisy and indirect observa-
tions is determined by its computational complexity. We propose a solution by means of nonlinear state space
filtering along with a state partition technique. The method is demonstrated to be computationally feasible for
spatiotemporal data with properties that occur typically in experimental recordings. It is applied to one com-
ponent of the simulated chaotic data of a two-component reaction diffusion system, yielding estimates of both
the unobserved state component and the diffusion constant.
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I. INTRODUCTION simulations is often out of scope. Even filters that maintain
only mean and covariance suffer from limited computer

Recent investigations into nonlinear systems with a spamemory capacity.
tiotemporal dynamical behavior initiated a fruitful interac- The method introduced here solves the problem at its
tion between experiments and theoretical modeling, espdoot: The global but high-dimensional estimation problem is
cially in the physical and chemical sciencdd-8|. partitioned into several local low-dimensional ones. An ill-
Sometimes, the model structure can be derived directly fron§onsidered reduction of dimensionality would reduce the
data by using inverse approach@s-14). For an accurate ayailable information content, too. .It follows that if the par-
quantitative description of spatiotemporal dynamics, the exlition area is smaller than the spatial correlation length, one
act values of the model parameters need to be known, b@nnot expect accurate estimates any longer.
these are often not available completely or determined only The outline of the paper is as follows. First, the state
imprecisely by theory15,16]. space formalism and its inverse problem, the filtering prob-

In this paper, the inverse problem of modeling, as a tool tdéM. is introduced briefly. Then, the state space formalism is
estimate parameters and unobserved states from measuflapted to deterministic spatiotemporal systems along with
ments on systems with spatiotemporal dynamics, is considhe partition method. The method will be elaborated on the
ered. Due to measurement influences, this identification taskstimation of an unobserved component and a parameter of a
is not straightforward: Since the data samples provide 0n|);:eact|on-d|ffu3|on model. Rather than elaborating on math-
an incomplete amount of information, the results of the idenematical details, we aim at giving a readable introduction
tification have to be regarded as estimates. These estimattusing on the applicability to experiments.
should approximate the true parameters and the true dynam-
ics in some optimal sense. The choice of an appropriate op- Il. SPATIOTEMPORAL SYSTEMS AND THE STATE
timality criterion then leads to an associated cost function to SPACE CONCEPT
be minimized. This minimization may be accomplished by
initial value approaches with more or less sophisticated
search strategiegl7—21. In case of strong nonlinearities,  Before considering the full spatiotemporal approach, in
noise, and indirect observations, often the cost function is s#his section the state space formalism and the associated in-
complex that the applicability of the initial value approach isverse problem of low-dimensional systefa3] is introduced
significantly diminished. On the other hand, recursive techfor a dynamical system, the time evolution of its st&¢)
niques, to evaluate the cost function in a sequential waye RPs is given by thesystem equation
provide a promising solution to accomplish the minimization , -
of complex cost functions of deterministic dynamical sys- S(t) =F(S(t),A(1), &(t),u(t)). (1)
tems[22]. _

Here, recently introduced novel nonlinear filtering tech-In general, the functiorF is nonlinear with respect to the
niques[23-26 to estimate parameters and indirectly andstate S(t). The dynamics depends on a parameter vector
unobserved states from spatiotemporal data are utilized(t) e R°*, some external but nonrandom inpuf(t)
These methods are based on the state space concept of sysRPu, and a white noise procegt) e RPs. The stochastic
tem dynamics. First, the spatiotemporal system is transterm e(t) is introduced to approximate rapidly fluctuating
formed by the method of lines to a system of coupled ordi-subsystems or unknown dynamics, e.g., unpredictable envi-
nary differential equations amenable to a treatment with théonmental influences.
state space formalism. To solve the inverse problem, then, in In view of the parameter estimation, it is convenient to
principle, filtering could be applied to these high- treatA as an additional state component. That is, an extended
dimensional “states.” Due to the high state dimension, thestateX(t) is constructed by augmenting the st&g) with
tracking of the whole filter density by means of Monte Carlothe parametek(t):

A. General state space modeling
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S(t) time t is constructed from the density at timie-1 and the

Mt))' (20 new incoming observation at timte The theorem of Bayes
and the theory of Markov chains provide the framework for

recursive or sequential estimation of the indirectly observed

-]

with X(t) e RPx (D,=D¢+D,). For a constant parameter

vector, the associated evolution equation, called state  State from data: _
equationin the following, is The collection of random variables; ,X,, . .. X; forms

a stochastic procesX={X;,X,, ... X;} with outcomes

X14={X1,X2, . .. X}. The statistical properties of such a
)- (3 process are given by the joint probability densjiy(X

=Xy.), Or in shortp(Xy.;). In order to describe dependencies
between the process variables, a conditional density is de-
fined by

F(S(t), N €(t),u(t))

>'<<t>=F(><<t>,e<t>,u<t>>=( 0
Typically, one cannot measur¥(t) directly but only
through an observation process which is described by th

observation equation

(X |X ): M (8)
Y (1) =HX(0)+ (). (4) P a0
The observation equation maps theobserved stat¥(t) to  which relatesX; to its predecessor¥;_,X;_,, ... ,X;. A
the observationY (t) e RPy via the observation functioii. process is called a Markov chain if the conditional density in

Unpredictable influences and distortions occurring during theé=g. (8) simplifies to the density(x,|x;_1). The state vari-
process of observation are represented by the white noisgble X; in Eq. (5) depends only on its predecessér_ 1,
processy(t) e RPy. Both the dynamical noise(t) and the  which leads to the interpretation of the state equatiras a
observational noisey(t) are assumed to be mutually uncor- Markov chain with the conditional densify(x|%;_1). The
related over time, i.e., their joint probability density factor- statistical properties of both processeXx and Y
izes for all times. The entity of Eq$3) and(4) is referredto  ={Y,Y,, ...,Yy}, which are related by Eq6), are de-

as (time-continuousstate space model scribed by the associated joint probability density, (X

Because observations can be sampled at discrete timesx,..,Y=y;.), or in shorto(Xy.¢,Y1.1)-

only, the problem of modeling has to be adapted accordingly In order to relate the probability densities of stochastic
by means of discretization with respect to the sampling timeprocessesX and Y with the outcomesx;.; and y;.

interval At. For notational convenience in the following, itis ={y,,y,, ... .y;}, the Bayes theorem

set to At=1. Discretization can be accomplished for the

time-continuous state space mod@l and(4) by transform- _ P(Y1:4/X1:0) p(Xq:1)

ing it to the correspondindiscrete state space model p(XalY10) = (Y1) ©
Xi=f(Xi-1,€-1,U0), () s utilized. Since the density(x;.;) contains the information

about the state prior to the observatipy,, it is called the
prior densityor simply prior. The information of the obser-
vationy; ; given by thelikelihood densityp(y;.i|X;.1) is used
to update the prior to the densip(x;|y;.1) called thepos-

t terior densityor posterior. Within the framework of the state
Xt:thl'}_j F(X(T),e(T),u)dT. (7)  space formalism, the state process is a Markov chain, i.e.,
1 p(XdX1.1—1)=p(X|X—1), and the observation density de-

Since this stochastic functional, in general, cannot be solveBends on the actual statg only, i.e., p(Vi|X1.t,Y1:1-1)

analytically, numerical approximation schemes have to b P(¥ilX). Arecursive scheme for the required inverse den-
employed. sity, a marginal density of the posterior, is obtained by

Y =H(X)+ . (6)

The mappind is given by the integral equation

B. State space filtering P(Xt|Y1:t):f P(XpalY1:) X1, (10)

The estimation of states amounts to the estimation of
probability densities; the estimated densities provide both thevhere the actual statg is conditioned on all observations up
state estimatege.g., by the mean value of the density esti-to timet. Applying the chain rule of Bayes and marginaliza-
mate$ and the estimation uncertaintg.g., by the variance tion, the so-calledilter densityp(x;|y;.;) is decomposed into
of the density estimaje two equations. These relate the transition densities of the
Therefore, the problem of retrieving the density of a statestate and observation equatiga(x,|x;_1) and p(yx;), to
X; from indirect and noisy observations is faced. Note thathe prior
the state contains the parameter veatorhich will be esti-
mated simultaneously with the trajectories. Since the density
of X, is conditioned on the given observations, it is often p(xt|yl:t—1):f p(Xe|Xe—1) p(Xe—1|y1:-1)dX -1 (12)
referred to as amverse densityFinding the inverse density
can be achieved in a recursive manner, i.e., the density a@nd the filter density
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p(YilX) p(X|y1:t-1) (i) Sampling: Calculate a set dfk:=2D,+1 sample
p(Xly1)= : (12)  points, thes points from the given mean and covariance of
f PYlX) p(X] Y1t 1) dX; the filter densityMV(X,_1,P,_,) for t=2:

X@1=)A(t_1+a( \/Dxlst—l)i (i=1,...Dy, (13

respectively. Equatiorill) predicts the new state utilizing
the employing information of all observations up to time

—1. The new incoming observation at tirhés used then to X =X 1—a(NDyP_1)i  (i=Dy+1,....D,),

correct this prediction by Eq12). (14
If the state and observation are governed by a linear dy- .

namics, with Gaussian white noisas~N(0,P,) and n X§5)1=Xt—11 (19

~M(O0,P,), the filter equations can be solved analytically, as

was shown first by Kalman and Bu¢g8,29. The case of Where (/.); denotes théth row of the matrix square root.

linear dynamics is not of much interest for parameter estimaThe parametew (0<a<1) determines the “spread” of the

tion, because even for linear dynamics the state space modglpoints around,_ ;.

becomes nonlinear if the extended state method is used for (jii) Prediction: Propagate the points through the state

parameter estimation. and observation equations. This means, comf{uf¢ ;) and
Analytical solutions, in general, cannot be found, theref(x("),)) for all o pointsx{", in order to estimate the mean

fore approximations to the filter equations are needed: FO§ng covariance of the predicted prior and likelihood by
weakly nonlinear models, the optimal filter equation may be

approximated by means of linearization of the system and R K .

observation function. For this so-obtained extended Kalman Xm_1=z wif(x§91), (16)
filter (EKF), explicit system function derivatives have to be =1

provided. This may become rather involved quite rapidly for K

higher-order approximations. Besides, the rather restrictive - _ i - i - ,
approximation used within the EKF sometimes leads to PX““‘l_izl WO D) =Xy 2l PO ) =Xyea) (2
strongly biased and inconsistent estimd(&g].

An alternative approximation approach is provided by — @®)[F(x) = Xy JLFOC) =X 1]" + P,
Monte Carlo methods, e.g., particle filter or Monte Carlo-

Markov chain algorithms. Although they may vyield better (17)
estimation results, accuracy is increased for the prize of nu- K
merical expense due to cumbers_ome stochastic simulations. Yt|t—1:2 Wih[f(XQl)], (18)
Moreover, the convergence rate is rather slow and must be i=1

accelerated by further approximations.

A hybrid approach that unites advantages of Monte Carlo _ _ . _ .
methods(better accuradywith the Kalman filter(easy to  Pyuj—1= 2, Wil h(F(X" 1) = Ve 1 LA (XD 1) = Ve 11"
handle the update equations for the staigsthe recently =1

K

proposed unscented Kalman fili&fKF) [23—26. Due to the (1= A ThE) ) — v he(x(K)
technique of “deterministic sampling,” a considerable reduc- (1= @) ¢=2) = Ve TNAE))
tion of the sample size is achieved. Despite its numerical ~Yii-1l'+P,. (19)

simplicity, the unscented Kalman filter estimates for mean

and covarianc®; are equally or more accurate than those of The vector products are outer products and the prime de-
the EKF of first ordef23,30. The UKF is numerically easier notes the transpose of a vector. The weights are defined to be
to handle, compared with Monte Carlo methods, while giv-w,=1/24°D, (i=1,...,D,) and wx=1—1/a’. Assume

ing better estimates, compared with the EKF. It has beefhat f and h are polynomials of order less than three and
successfully applied so far to the estimation of unobserve@oises are additive and Gaussian, then the estimates of the
states and parameters in nonlinear models given by neurghoments given in Eq$16)—(19) are exact. The state dimen-
networks[31] and ordinary and stochastic differential equa-sijon D, should be canceled out from the point computa-

tions[22]. tion by settinga=1/\/D,. This ensures, for example, com-
parability of estimation results stemming from different state
C. The unscented Kalman filter dimensions.

) ) (iv) Update: Finally, correct the predicted moments by the
The UKF algorithm for state space models with mutuallydatayt using the Kalman update equations

uncorrelated additive Gaussian noises consists of the follow-
ing stepg32,33:

(i) Select an initial valueX;~M(X;,P;). In the case of X=Xt KO Y, (20
deterministic state dynamics, the covariaemay be in- Pi=Pyri 1~ KiPyyi 1K{ (21)
terpreted as an uncertainty about the chosen initial gugss
for the true state. with
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K(=Pyy y_-t1|t—1 (22) spatiotemporal evolution of the variabl&r,t). This defines
’ the system’s spatiotemporal trajectory.
and Continuous spatiotemporal trajectories cannot be ob-
K served, ratheN/(r,t) can be taken at discrete sampling
5 _2 INOREE hefox® ~ , points. A discrete spatiotemporal trajectory is then a set
Xy~ & Wilf(X2 1) = X1 ILh(FOGZ ) ] = yye-1 1" + (2 {Ved) with r=ry,rp, ... ry andt=ty,tp, ... ty, where
R R N, denotes the number of spatial sampling points. For nota-
— &) [FOMD) =Xy LM (FOXIO) T =Ve—1]’. (23)  tional convenience and with respect to the examples to come
along, the description is reduced to the case of two spatial
(v) Proceed recursively with stegs)—(iv), using the fil-  dimensionsp, =2, i.e.,ri=(ry,ro;)’. Note that the proce-
ter density estimates made one time step before, until corture introduced next is valid for three-dimensional systems,
vergence for the state estimate is reached. for example, as well. Instead of indexing each point directly,
For deterministic systems, the states uniquely defined  the more compact writingV, ;} enables us to save indices
and will be called therue state Since initially only a guess and to define the method for arbitrarily shaped regions in
X, with some uncertainty?; is given, the state can be inter- space. For example, in some experiments there are obstacles,
preted formally as a random variable with Gaussian densitye.g., measurement devices, that would otherwise prevent a
Xi~MX;,P). Its estimate is given by the mean valge  Straightforward indexing of points. What is lost here is that
Note that the dynamics itself remains deterministic, ieg., the neighborhood relationships cannot be seen immediately
=0. With an increasing amount of data, the estimated filter@nymore, but this will not turn out to be of much importance.
density becomes narrower. The limit is determined by the The elements of thpatternat some fixed time, i.e., the
approximation errors of the UKF. Such errors arise, for ex-Set{Vy ¢ withr=ry,r5, ... ry, may be interpreted as rep-
ample, in the case of polynomial order higher than twd in resenting the components of a state ve§awith dimension
or h, for which the UKF estimates become biased. Ds=N,D, . In the following, the words “pattern” and “state
The state and observation equations are not affected byector of a pattern” are used synonymously.
the UKF in any way, unlike as with the EK@&uncated Tay- In order to get the patter®, from the patternS,_;, a
lor expansioi and the DD2 filter(truncated Stirling expan- numerical integration over time according to Eg84) has to
sion) [30]. The only approximation here is to neglect cumu- be carried out. If the method of linéMOL) is used, the state
lants of the order higher than two for the densitiesS is the solution of a system of coupled ordinary differential
considered. If higher-order cumulants become significantequations in time,
e.g., for long-tailed or multimodal distributions, the UKF .
estimates are inconsistent and therefore do not sufficiently S(t)=FuoL(S(1),N). (25
reflect the main properties of true dynamics any longer. One
of the main advantages of the UKF is that there is no needlVith S_; being the initial condition, the discrete state equa-
for a computation of derivatives with respect to the statefion thus reads
This allows for the straightforward use of state space models .
that contain nondifferentiable terms or models where the = .
Jacobian cannot be computed easily. This is often the case S=S-t ft_lFMOL(S(T)’)\)dT_'fS(S"l'M' 26
for high-dimensional systems occurring with partial differen-
tial equations. The problem of adapting partial differential Considering observations of spatiotemporal trajectories
equations to the state space formalism is treated in the folS;, an observation equation

lowing section.
Yi=hs(S) + m (27)

is added, accounting for indirect and imprecise observations.
Here, 5, represents a white noise procebg; RPs— RPy is

A. State space modeling of spatiotemporal systems the observation mapping, whekg, again denotes the num-
ber of components that are observéasually D,<Dy).

The evolution equation of a deterministic and time- .
homogeneous spatiotemporal system with only local interacEq“at'onS(%) and (27) then correspond to the state space

tions is given by model given in Eqs(5) and (6).

Ill. PARAMETER AND STATE ESTIMATION IN
SPATIOTEMPORAL SYSTEMS

aNV(r,t)=F(V,r,\,4,), (24) B. Partitioned filtering

The state vector of a spatiotemporal problem of even low
dimensionD,, turns out to be high dimensional for realistic
- grid sizes. For example, taking sample points lying on a
parameter vectort=t; the time, andF a nonlinear func- two-dimensional square grid WiterI N,2=60, one has
tional. Equation(24), in conjunction with initial conditions N, =3600, and withD,=2 one obtainsD,=7200. There-
V(r,t;) and boundary conditiong(t)=V(r,t) (r being the fore, the covariance matrix has 84 entries. This turns
boundary coordinates of the systermompletely governs the out to be computationally infeasible, since matrix inversions,

where V(r,t) e RP» denotes the system’s state variable,
=(ry,r2, ... fp,) € R°r the spatial coordinatey e R a
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S S tion into each local estimation problem. In particular, a pos-
Lt 3t sible solution is to require the exterior points of each patch to
be constanbhumericalvalues rather than dynamical variables
- — during the integration from—1 tot. In this way, dynamical
decoupling of the patch is achieved while still maintaining
rZI S4: 4 D-S6,¢ exterior information. The constants are taken to be the cor-
responding initial values of the neighboring patches, i.e., the
S— B— respective components &; 1, Sy;_ 1, Ssr_1, andSg; 4
in Fig. 1. If the integration front— 1 tot has been performed
for each patch, then the same pattern is obtained as one
S7.¢ Se,¢ would get by solving the global state equation. Consequently,

in this case not only exterior, but global information is uti-
lized.

FIG. 1. Piece of a partitioned pattern: Thin lines correspond to  Formally, the exterior points are interpreted as introduced
the grid lines and thick lines mark the boundaries of the respectivgyy an external inpu,, . to the state equation of each patch.
patchS ;. Grid points needed with the estimation of the pash  One could think of “controlling” the local prediction by
are marked by filled and open circles, the latter being exteriolsome additional information of exterior points provided
points. throughu,, ;. Thus, the state equation f&, ; of each patch
ads

for example, are needed in the UKF update equations. Tge
handle this problem, the estimation procedure is reformu- Sot=Fus(Sut-1: MUy 0)- (29
lated by an approximative decoupled estimation of an en-

semble of patches Patches are defined to be arbitrarily Analogously, the observation equation for each patch reads
shaped and disjunct sets that constitute the pattern, if patched

together in a way to be specified further. The state of each Y ot= o s(Sut) T 7ot - (29
patch is denoted b§,, ; with =1, ... N,, whereN, is the

number of patches. In analogy to the pattern, the phrase : .
“vatch” and “state vector of a patch” are used synony- Tated using the UKF rule®0) and(21). This procedure has

mously in the following. All points that lie outside a patch 0 pe repeated forAa” pAatches aE time1 in order to get the

are called itsexterior points estimated patterr5,={S;;, ... ,SNp,t}. For patterns pro-
First, an appropriate state equation is constructed for eadfiluced by a deterministic system, the estimate of the true

patch by the method of lines, i.e., the spatial differential oppatternv, is given by the mears,, while P, represents the

erator in Eq.(26) is substituted by a difference scheme. As agssociated estimation errors.

result, one gets a system of coupled ordinary differential The question that arises is: how the patch sizes should be

equations called, in the following, the “global state equa-chosen to get good estimation results? It stands to reason that

tion.” In order to getS,,, its initial conditionsS,,; ; and  the best estimate would result from solving the global prob-

The predictions for state and observations can then be up-

some exterior points are needed. lem, but as mentioned earlier this may be computationally
For example, let us assumie,=2, D,=1, N; =N, intractable. Fortunately, due to decreasing spatial coupling

=9 andw=1,2,...,9,ie., a patter$, with D;=81 at some strengths with increasing distances of the respective spatial

timet is decomposed into nine patch®g, . . . .Sy, of equal  points, certain covariance entries will not contribute much to

sizes and shapes. Ea& again consists of nine elements the signal’'s variance, and therefore may be neglected during
Srlj T wherej andk indicate their positions. Let us as- the estima.tion. procedure. A stat_isticall measure to quantify
sume, furthermore, that only immediate spatial neighboringh€ dynamical importance of spatial neighbors can be formu-
points are coupled. In order to get, for examge, from a;ed in terms of the corrglanon length. I.f the spatial sam-

Ss¢-1, using a central difference scheme for the élpproximapllng points of the patte_rn lie on a quadratlc and rggular grid,

tion of spatial differential operators, the relevant partSof the corresponding spatlla'l correlations can be estimated from
results as is shown in Fig. 1. given datay={y,;,1<i,j< N, 1<t<N} by

The evolution equations for the elementsSgf are pro- NN,
vided by a subset of the global state equation that may utilizes _ 1 S e =Y (Ve . v
components of the neighboring patct®s, S,;, Ss;, and KITN(N,—1) &1 Yeii mY0Wtisk-1j+1-17 Y0,
Sg¢. To summarize, the question of a dynamical partition (30
corresponds to the issue of how to proceed with these exte-
rior points. wherek,1=1,2,... JN,, forming the components of the

The simplest partition is given by the exclusion of the correlation matrixC. The correlation lengths with respect to
exterior points. This can be accomplished by using nonceneach spatial coordinate are then defined as the lags for which
tral spatial difference schemes in the method of lines to solvéhe correlations have decreased by tledlir part. Taking into
the partial differential equation. In this case, it is impossibleaccount the points that lie outside this range of correlation
to benefit from the exterior points as a source of informationgives small covariance entries and thus has only minor ef-
though. It should be better to incorporate exterior informa-fects on the estimation result. Consequently, in order to re-
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duce the dimensionality while achieving good estimations, (4) Compute the prediction of each patch. The predicted
the patch sizes should correspond to the correlation rangearameter is obtained by averaging over the ensemble of
spanned by the correlation lengths. estimated parameters one time step before.
The partitioned filteringallows for an approximation by a (5) Compute the update for the extended state of each
considerable reduction of the overall system’s dimensionalpatch.
ity. For the previous example, the hardly treatable estimation (6) Proceed with step 3 until convergence for the param-
of a system with dimension 81 is reduced to nine estimatioreter estimate is reached.
problems, each of dimension nine. The partitioned filtering is  (7) Construct the estimated patterns using the estimated
an approximation to the global filtering problem, since onepatches. The final parameter estimate is taken to be the en-
does not use the global covariance matrix. Due to the nonsemble average over the parameter estimates.
linear interactions and the partitioning, an explicit error
analysis seems to be, in general, impossible. Therefore, to
gain confidence into the results, the applicability of this tech-
nigue should be validated on simulated data before an appli- The partitioned filtering method is applied to a two-
cation to experimental data is considered. dimensional reaction-diffusion systef84—3§. This system
is chosen due to its rich spatiotemporal dynamical behavior
and its ability to accurately describe observations in catalytic
surface reactiong37,3§. If excited, the underlying chemical
So far a partition technique for state estimation was Consystem produces concentration differences propagating
sidered, i.e., the parameter values were known. A possiblghrough the chemical reactor. Target and spiral patterns are
way for estimating unknown parameter values is treating th@bserved as well as spiral defect chaos. The underlying com-

parameter as an additional state space component, as Wg&x chemical reaction is simplified to a system of two vari-
described for low-dimensional systems in Sec. Il A. The ex-aples, an activator; and an inhibitor .

IV. EXAMPLE

C. Parameter estimation in partitioned systems

tended state vector of dimensi@y=N,D,+ D, now is The model is given by
Swt 2 2
X t:( ) (31) vy 1 citv, d“vy 9,
w, —_— . — +
Aot ot 0401(01 vy C3 arf é’rg ;

34

It will be called juststatein the following. (39

Since the parameter is treated as a state component, some v,
“dynamics” has to be defined. If all patches are of the same —=g(vy)—vy, (35
size and shape, they may be treated as local solutions of the Jt
same system but with different initial and boundary condi- _ ) _ )
tions. The parameters estimated within a patch then may vayith the piecewise defined function
and represent aN,-dimensional ensemble of proposals from
which the parameter should be chosen. The most likely pa- 0, Osv,<1/3
rameters with respect to the data follow from the maximum gv)) =1 1-6.7%,(v;—1)?, 1/3<vy<1 (36
of the density estimated by the frequency distribution of the
proposals. For the sake of simplicity, the ensemble density is
assumed to be symmetric, such that the location of the maxi- o .
mum is given by its average value. The predicted parametef© Solve Eqs(34) and(35) on a rectangular grid with spatial
at timet, therefore, is set to be the average of the paramete@mpling stepsir=0.5 and with periodic boundary condi-

of all patches at timé— 1. In state space notation, this readstions numerically, the method of lines is used. The Laplacian
is approximated by a difference scheme of second-order ac-

curacy. The spatial resolution is chosen to Ne =N,

fm,s(Sw,t—l!Aw,t—lium,t) .
N =60, while the parameters are setdp=0.07, c,=0.84,
Xot= 1 Ep A~ : (32 cz=1, andc,=0.08. After the excitation of the system and
Ny “= wt=-1 omitting a transient phase, 100 consecutive patterns are re-
corded with a time step oAt=0.04, an example being
shown in Fig. 2: Spiral waves are broken up and form a
Yot=ho (X )+ 27t (33)  chaotic pattern for both components of the system.
The inhibitor concentration cannot be observed directly,
This section ends with a summary of the proposed methodyut its theoretical dynamical behavior including the exact
given as the following. values of some parameters is knowRarameter estimation
(1) Construct a partition. for the completelyobserved system has been performed in
(2) Construct the extended state vector for each patch. Refs.[10,17.) Therefore, in this example the typical situa-
(3) Define the control inputs for the state by taking thetion that only the first component; is observed is consid-
numerical values of the estimates of the respective exterioered. To simulate possible experimental conditions, it is cor-
points one time step before. rupted by an additive noise witk,=0.01 (Fig. 3. The

1, 1<l)1.
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estimated 7&1
0.6
0.6
0.4 0.4
0.2 02

20 40 60 20 40 60 "0 25 50 75 100

t

FIG. 2. The true patterns,; anduv,, . Abscissa and ordinate A
values denote indices of grid points. The gray-scale units are dimen- FIG. 4. Left: estimated pattersy, . The partition into patches
sionless. of size 66 is marked by dashed lines. The gray-scale units are
dimensionless. Right: estimated paramétpfor two different ini-

- o ) tial guesses. The true parameker 1 is indicated by a dotted line.
diffusioncoefficient\ = c5 is assumed to be unknown. In or-

der to provide a partition size, the correlation matrix has

been estimated from data by riance, is taken to b& =max{P, },) a rather conserva-
N LA A, tive estimation. Additionally, the convergence of the param-
Coym=2(C+C’) (37) eter estimate is shown in Fig. 4 for two different initial
N _ o _ guesses.
giving a correlation length of @n units of the spatial sam- ~ Resyits obtained for all partitions are summarized in

pling interva). Compared with Eq(30), the estimator given  Tapje | One observes that the size of the resulting patches
in Eq. (37) was slightly modified in order to retain the sys- consjderably influences the computational time and the esti-
tem’s isotropic structure, i.e., its invariance against permutamation quality. On one hand, small patches worsen the qual-
tion of the spatial coordinates. _ , ity of pattern estimations, since the global covariance matrix
Therefore, the problem is the following. Estimate the true;g approximated more crudely. The advantage is that the
quantitiesvy, v,, and\ from the indirect and noisy obser- compytational time may be lower. On the other hand, large
vationsy. In terms of state space modeling, this is the samg,atches give better estimates but suffer from increased com-
as the problem of estimating; , which has the dimension of puting time. For the example used here, the quality of pattern
D,=D,N,+D,=7201. and parameter estimates do not differ much for sizes larger
The estimated states ;| andu;LtN are shown for a parti- than patches with size>66 (Table ), while the computation
tion into patches of size %6 (Figs. 3 and 4 corresponding time grows drasticallfFig. 5. This confirms the &6 par-
to the data correlation length of 6. Besides this, this partitiorfition as an optimal choice. Note that the dependence be-
provides the best trade-off between estimation accuracy arf@veen the patch size and the computational time is nonmono-
computational time. Results concerning other partitions aréonic; a minimum at intermediate values occurs. The optimal
presented later in this section. The initial state is chosen to beartition with respect to computational time or estimation
8~ My;- 1Ds'|5511)' wherey, e R denotes the spatial mean &ccuracy may differ from system to system and the numeri-

, . cal setup as well.
value of the observed pattegn e RMr, 1o, being the unit P
column vector of dimensio®s=D,N,. The entries of the TABLE |. Estimation and performance results for different

diagonal matrixP, ;e RPs*Ps are set to 10. The initial pa- Pafitions.  The root mean  square  error s
rameter estimate is chosen to be twice the true value, witft \/[1/('35* 1)](SIN*ASN)’(S(N*S[N) is a measure for the quality
the same covariance as the states. The estimated parametéthe estimated stat§, . Computation time,nm,as measured for
A, is the average over the parameter ensemble atttifiee ~ @MATLAB implementation on a 1.5-GHz computer.

uncertainty of the final parameter estim:itt%, i.e., its cova-

Patch  No. of

estimated v, size  patches teomp(S) Ay Prty Emso, Emmso,
1 - 1x1 3600 1549 11173 03719 0.0139 0.0215
08 %2 900 270 10544 00948 0.0118 0.0247
: 06  3x3 400 162 1.0424 00583 0.0114 0.0210
05 Bt BN,  4xa 225 179 1.0380 0.0371 0.0123 0.0224
i ,, 5X5 144 289 10336 00222 00145 00220
" : 6x6 100 593 1.0390 0.0146 0.0110 0.0155
T 10x10 36 6636 1.0585 0.076 0.0107 0.0121

A 12x12 25 12319 1.0531 0.0064 0.0107 0.0122

FIG. 3. Left: observatio:ytN. Right: estimated pattemy ; . The 15x 15 16 26250 1.0546 0.0037 0.0112 0.0121
partition into patches of size>6 is marked by dashed lines. The 20x20 9 68957 1.0558 0.0026 0.0133 0.0122
gray-scale units are dimensionless.
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30 x107° sible to estimate the complete state from partial observations.
3 This is not a question of the amount of noise but mainly of
20 ) the system’s structure. For linear systems without spatial dy-
namics, criteria can be formulated that allow for a test for
10 1 identifiability [39—42, but there is no concise theory up to
now for nonlinear systems, except for some special classes,
0 such as polynomials or compartment models of certain types

1.035 1.04 1.045 % 10 20 30 [43-45. To the knowledge of the authors, the identifiability

problem for partial differential equations is yet unsolved.

FIG. 5. Left: histogram of the parameter ensemble for the 6  The here-used particular approach of unscented Kalman
X6 partition att=100. The frequency distribution is approximately fjjtering gives minimum mean squared error estimates for the
symmetric, justifying the use of the average in order to characterizgiaie \When estimating the state and the parameter simulta-
the most likely parameter. Right: estimated correlation maoily o,y the resulting estimates for the parameter are optimal
the relevant part is shownAxes denote spatial lags units of the for the minimum mean squared error state, which may lead
spatial Samp"n.g Stepa.long t.he respective spatial coordinates. to some bias in the parameter estimates.’ Furthermore, the
Gray-scaled units are dimensioniess. unscented Kalman filter can produce biased results for the
states where strong nonlinearities are apparent. Only for
polynomial nonlinearities up to the second order, it is guar-

The method of partitioned filtering for estimating param-antéed to yield optimal estimates.
eters and unobserved components from partial and noisy ob- !t turns out in the example that the unscented Kalman
servations of spatiotemporal dynamical systems has been i,t,_jter gives excelle_nt results for even h_|gher-order_nonl|near|-
troduced. It has been exemplified on simulations of dies. The reason is fchat the nonl|nea_r|t|es tha_t arise fr_om the
reaction-diffusion system. Due to the method’s recursivde€mporal discretization of the dynam[cs of a time-continuous
structure and the newly introduced partition technique, théYStem are only weak, unless the time steps are too large;
method works efficiently for systems with several numbersach numerical integration scheme is based on a decomposi-
of variables and spatial coordinates. A criterion for thetlon of the dynamics into an identity mapping to which a
choice of the partition is provided by means of the correla-cOMparably small correction is added. For large sampling
tion length of the data, although there may exist systemst,'me steps, where the nonlinearities become more S|gn|f|qant,
where the accuracy may also be good for patches smallépore accurate methods based. on Monte Carlo approxima-
than those determined by the correlation length. t!qns coqld be used_ln the here-lntroduced framework of par-

The example has been restricted to a system with a knowfitioned filtering. This will be a topic of further research.
structure and only one unknown parameter in order to pre-
vent problems with structural identifiability issues, which
may arise when increasing the number of unknown param-
eters. For example, even for linear state space models with A.S. and J.K. acknowledge financial support from the
known parameters, it may be possible that parts of the statéolkswagen-Stiftung. H.U.V. benefited from stimulating dis-
components are not identifiable; in other words, it is impos-cussions with J. Timmer.

V. DISCUSSION
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