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Identification of nonlinear spatiotemporal systems via partitioned filtering
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The problem of identifying continuous spatiotemporal nonlinear systems from noisy and indirect observa-
tions is determined by its computational complexity. We propose a solution by means of nonlinear state space
filtering along with a state partition technique. The method is demonstrated to be computationally feasible for
spatiotemporal data with properties that occur typically in experimental recordings. It is applied to one com-
ponent of the simulated chaotic data of a two-component reaction diffusion system, yielding estimates of both
the unobserved state component and the diffusion constant.
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I. INTRODUCTION

Recent investigations into nonlinear systems with a s
tiotemporal dynamical behavior initiated a fruitful intera
tion between experiments and theoretical modeling, es
cially in the physical and chemical sciences@1–8#.
Sometimes, the model structure can be derived directly fr
data by using inverse approaches@9–14#. For an accurate
quantitative description of spatiotemporal dynamics, the
act values of the model parameters need to be known,
these are often not available completely or determined o
imprecisely by theory@15,16#.

In this paper, the inverse problem of modeling, as a too
estimate parameters and unobserved states from mea
ments on systems with spatiotemporal dynamics, is con
ered. Due to measurement influences, this identification
is not straightforward: Since the data samples provide o
an incomplete amount of information, the results of the id
tification have to be regarded as estimates. These estim
should approximate the true parameters and the true dyn
ics in some optimal sense. The choice of an appropriate
timality criterion then leads to an associated cost function
be minimized. This minimization may be accomplished
initial value approaches with more or less sophistica
search strategies@17–21#. In case of strong nonlinearities
noise, and indirect observations, often the cost function is
complex that the applicability of the initial value approach
significantly diminished. On the other hand, recursive te
niques, to evaluate the cost function in a sequential w
provide a promising solution to accomplish the minimizati
of complex cost functions of deterministic dynamical sy
tems@22#.

Here, recently introduced novel nonlinear filtering tec
niques @23–26# to estimate parameters and indirectly a
unobserved states from spatiotemporal data are utiliz
These methods are based on the state space concept o
tem dynamics. First, the spatiotemporal system is tra
formed by the method of lines to a system of coupled or
nary differential equations amenable to a treatment with
state space formalism. To solve the inverse problem, then
principle, filtering could be applied to these hig
dimensional ‘‘states.’’ Due to the high state dimension,
tracking of the whole filter density by means of Monte Ca
1063-651X/2003/68~1!/016202~9!/$20.00 68 0162
-

e-

m

-
ut
ly

o
re-

d-
sk
ly
-
tes
m-
p-
o

d

o

-
y,

-

-

d.
sys-
s-
i-
e
in

e

simulations is often out of scope. Even filters that maint
only mean and covariance suffer from limited compu
memory capacity.

The method introduced here solves the problem at
root: The global but high-dimensional estimation problem
partitioned into several local low-dimensional ones. An i
considered reduction of dimensionality would reduce
available information content, too. It follows that if the pa
tition area is smaller than the spatial correlation length, o
cannot expect accurate estimates any longer.

The outline of the paper is as follows. First, the sta
space formalism and its inverse problem, the filtering pro
lem, is introduced briefly. Then, the state space formalism
adapted to deterministic spatiotemporal systems along w
the partition method. The method will be elaborated on
estimation of an unobserved component and a parameter
reaction-diffusion model. Rather than elaborating on ma
ematical details, we aim at giving a readable introduct
focusing on the applicability to experiments.

II. SPATIOTEMPORAL SYSTEMS AND THE STATE
SPACE CONCEPT

A. General state space modeling

Before considering the full spatiotemporal approach,
this section the state space formalism and the associate
verse problem of low-dimensional systems@27# is introduced
for a dynamical system, the time evolution of its stateS(t)
PRDs is given by thesystem equation

Ṡ~ t !5F̃„S~ t !,l~ t !,e~ t !,u~ t !…. ~1!

In general, the functionF̃ is nonlinear with respect to the
state S(t). The dynamics depends on a parameter vec
l(t)PRDl , some external but nonrandom inputu(t)
PRDu , and a white noise processe(t)PRDs . The stochastic
term e(t) is introduced to approximate rapidly fluctuatin
subsystems or unknown dynamics, e.g., unpredictable e
ronmental influences.

In view of the parameter estimation, it is convenient
treatl as an additional state component. That is, an exten
stateX(t) is constructed by augmenting the stateS(t) with
the parameterl(t):
©2003 The American Physical Society02-1
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X~ t !5S S~ t !

l~ t !
D , ~2!

with X(t)PRDx (Dx5Ds1Dl). For a constant paramete
vector, the associated evolution equation, called thestate
equationin the following, is

Ẋ~ t !5F„X~ t !,e~ t !,u~ t !…5S F̃„S~ t !,l,e~ t !,u~ t !…

0
D . ~3!

Typically, one cannot measureX(t) directly but only
through an observation process which is described by
observation equation

Y~ t !5H„X~ t !…1h~ t !. ~4!

The observation equation maps theunobserved stateX(t) to
the observationY(t)PRDy via the observation functionH.
Unpredictable influences and distortions occurring during
process of observation are represented by the white n
processh(t)PRDy . Both the dynamical noisee(t) and the
observational noiseh(t) are assumed to be mutually unco
related over time, i.e., their joint probability density facto
izes for all times. The entity of Eqs.~3! and~4! is referred to
as ~time-continuous! state space model.

Because observations can be sampled at discrete t
only, the problem of modeling has to be adapted accordin
by means of discretization with respect to the sampling ti
intervalDt. For notational convenience in the following, it
set to Dt51. Discretization can be accomplished for t
time-continuous state space model~3! and~4! by transform-
ing it to the correspondingdiscrete state space model

Xt5f~Xt21 ,et21 ,ut!, ~5!

Yt5H~Xt!1ht . ~6!

The mappingf is given by the integral equation

Xt5Xt211E
t21

t

F~X~T!,e~T!,ut!dT. ~7!

Since this stochastic functional, in general, cannot be so
analytically, numerical approximation schemes have to
employed.

B. State space filtering

The estimation of states amounts to the estimation
probability densities; the estimated densities provide both
state estimates~e.g., by the mean value of the density es
mates! and the estimation uncertainty~e.g., by the variance
of the density estimate!.

Therefore, the problem of retrieving the density of a st
Xt from indirect and noisy observations is faced. Note t
the state contains the parameter vectorl which will be esti-
mated simultaneously with the trajectories. Since the den
of Xt is conditioned on the given observations, it is oft
referred to as aninverse density. Finding the inverse density
can be achieved in a recursive manner, i.e., the densit
01620
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time t is constructed from the density at timet21 and the
new incoming observation at timet. The theorem of Bayes
and the theory of Markov chains provide the framework
recursive or sequential estimation of the indirectly observ
state from data:

The collection of random variablesX1 ,X2 , . . . ,Xt forms
a stochastic processX5$X1 ,X2 , . . . ,Xt% with outcomes
x1:t5$x1 ,x2 , . . . ,xt%. The statistical properties of such
process are given by the joint probability densityrX(X
5x1:t), or in shortr(x1:t). In order to describe dependencie
between the process variables, a conditional density is
fined by

r~xtux1:t21!5
r~x1:t!

r~x1:t21!
, ~8!

which relatesXt to its predecessorsXt21 ,Xt22 , . . . ,X1. A
process is called a Markov chain if the conditional density
Eq. ~8! simplifies to the densityr(xtuxt21). The state vari-
able Xt in Eq. ~5! depends only on its predecessorXt21,
which leads to the interpretation of the state equation~5! as a
Markov chain with the conditional densityr(xtuxt21). The
statistical properties of both processesX and Y
5$Y1 ,Y2 , . . . ,Yt%, which are related by Eq.~6!, are de-
scribed by the associated joint probability densityrXY(X
5x1:t ,Y5y1:t), or in shortr(x1:t ,y1:t).

In order to relate the probability densities of stochas
processesX and Y with the outcomesx1:t and y1:t
5$y1 ,y2 , . . . ,yt%, the Bayes theorem

r~x1:tuy1:t!5
r~y1:tux1:t!r~x1:t!

r~y1:t!
~9!

is utilized. Since the densityr(x1:t) contains the information
about the state prior to the observationy1:t , it is called the
prior densityor simply prior. The information of the obser
vationy1:t given by thelikelihood densityr(y1:tux1:t) is used
to update the prior to the densityr(x1:tuy1:t) called thepos-
terior densityor posterior. Within the framework of the state
space formalism, the state process is a Markov chain,
r(xtux1:t21)5r(xtuxt21), and the observation density de
pends on the actual statext only, i.e., r(ytux1:t ,y1:t21)
5r(ytuxt). A recursive scheme for the required inverse de
sity, a marginal density of the posterior, is obtained by

r~xtuy1:t!5E r~x1:tuy1:t!dx1:t21 , ~10!

where the actual statext is conditioned on all observations u
to time t. Applying the chain rule of Bayes and marginaliz
tion, the so-calledfilter densityr(xtuy1:t) is decomposed into
two equations. These relate the transition densities of
state and observation equation,r(xtuxt21) and r(ytuxt), to
the prior

r~xtuy1:t21!5E r~xtuxt21!r~xt21uy1:t21!dxt21 ~11!

and the filter density
2-2
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r~xtuy1:t!5
r~ytuxt!r~xtuy1:t21!

E r~ytuxt!r~xtuy1:t21!dxt

, ~12!

respectively. Equation~11! predicts the new state utilizing
the employing information of all observations up to timet
21. The new incoming observation at timet is used then to
correct this prediction by Eq.~12!.

If the state and observation are governed by a linear
namics, with Gaussian white noisese;N(0,Pe) and h
;N(0,Ph), the filter equations can be solved analytically,
was shown first by Kalman and Bucy@28,29#. The case of
linear dynamics is not of much interest for parameter estim
tion, because even for linear dynamics the state space m
becomes nonlinear if the extended state method is used
parameter estimation.

Analytical solutions, in general, cannot be found, the
fore approximations to the filter equations are needed:
weakly nonlinear models, the optimal filter equation may
approximated by means of linearization of the system
observation function. For this so-obtained extended Kalm
filter ~EKF!, explicit system function derivatives have to b
provided. This may become rather involved quite rapidly
higher-order approximations. Besides, the rather restric
approximation used within the EKF sometimes leads
strongly biased and inconsistent estimates@30#.

An alternative approximation approach is provided
Monte Carlo methods, e.g., particle filter or Monte Car
Markov chain algorithms. Although they may yield bett
estimation results, accuracy is increased for the prize of
merical expense due to cumbersome stochastic simulat
Moreover, the convergence rate is rather slow and mus
accelerated by further approximations.

A hybrid approach that unites advantages of Monte Ca
methods~better accuracy! with the Kalman filter~easy to
handle the update equations for the states! is the recently
proposed unscented Kalman filter~UKF! @23–26#. Due to the
technique of ‘‘deterministic sampling,’’ a considerable redu
tion of the sample size is achieved. Despite its numer
simplicity, the unscented Kalman filter estimates for meanxt
and covariancePt are equally or more accurate than those
the EKF of first order@23,30#. The UKF is numerically easie
to handle, compared with Monte Carlo methods, while g
ing better estimates, compared with the EKF. It has b
successfully applied so far to the estimation of unobser
states and parameters in nonlinear models given by ne
networks@31# and ordinary and stochastic differential equ
tions @22#.

C. The unscented Kalman filter

The UKF algorithm for state space models with mutua
uncorrelated additive Gaussian noises consists of the foll
ing steps@32,33#:

~i! Select an initial valueX̂1;N( x̂1 ,P̂1). In the case of
deterministic state dynamics, the covarianceP̂1 may be in-
terpreted as an uncertainty about the chosen initial guesx̂1
for the true state.
01620
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~ii ! Sampling: Calculate a set ofKª2Dx11 sample
points, thes points, from the given mean and covariance
the filter densityN( x̂t21 ,P̂t21) for t>2:

xt21
( i ) 5 x̂t211a~ADxP̂t21! i ~ i 51, . . . ,Dx!, ~13!

xt21
( i ) 5 x̂t212a~ADxP̂t21! i ~ i 5Dx11, . . . ,2Dx!,

~14!

xt21
(K) 5 x̂t21 , ~15!

where (A.) i denotes thei th row of the matrix square root
The parametera (0,a<1) determines the ‘‘spread’’ of the
s points aroundx̂t21.

~iii ! Prediction: Propagate thes points through the state
and observation equations. This means, computef(xt21

( i ) ) and
h(f(xt21

( i ) )) for all s pointsxt21
( i ) in order to estimate the mea

and covariance of the predicted prior and likelihood by

x̂tut215(
i 51

K

wi f~xt21
( i ) !, ~16!

P̂x;tut215(
i 51

K

wi@ f~xt21
( i ) !2 x̂tut21#@ f~xt21

( i ) !2 x̂tut21#81~1

2a2!@ f~xt21
(K) !2 x̂tut21#@ f~xt21

(K) !2 x̂tut21#81Pe ,

~17!

ŷtut215(
i 51

K

wih@ f~xt21
( i ) !#, ~18!

P̂y;tut215(
i 51

K

wi@h„f~xt21
( i ) !…2 ŷtut21#@h~ f~xt21

( i ) !!2 ŷtut21#8

1~12a2!@h„f~xt21
(K) !…2 ŷtut21#@h„f~xt21

(K) !…

2 ŷtut21#81Ph . ~19!

The vector products are outer products and the prime
notes the transpose of a vector. The weights are defined t
wi51/2a2Dx ( i 51, . . . ,2Dx) and wK5121/a2. Assume
that f and h are polynomials of order less than three a
noises are additive and Gaussian, then the estimates o
moments given in Eqs.~16!–~19! are exact. The state dimen
sion Dx should be canceled out from thes point computa-
tion by settinga51/ADx. This ensures, for example, com
parability of estimation results stemming from different sta
dimensions.

~iv! Update: Finally, correct the predicted moments by t
datayt using the Kalman update equations

x̂t5 x̂tut211K t~yt2 ŷtut21!, ~20!

P̂t5P̂x;tut212K tP̂y;tut21K t8 , ~21!

with
2-3
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K t5P̂xyP̂y;tut21
21 ~22!

and

P̂xy5(
i 51

K

wi@ f~xt21
( i ) !2 x̂tut21#@h~ f~xt21

( i ) !#2 ŷtut21#81~1

2a2!@ f~xt21
(K) !2 x̂tut21#@h~ f~xt21

(K) !#2 ŷtut21#8. ~23!

~v! Proceed recursively with steps~ii !–~iv!, using the fil-
ter density estimates made one time step before, until c
vergence for the state estimate is reached.

For deterministic systems, the statext is uniquely defined
and will be called thetrue state. Since initially only a guess
x̂1 with some uncertaintyP̂1 is given, the state can be inte
preted formally as a random variable with Gaussian dens
X̂t;N( x̂t ,P̂t). Its estimate is given by the mean valuex̂t .
Note that the dynamics itself remains deterministic, i.e.,et
50. With an increasing amount of data, the estimated fi
density becomes narrower. The limit is determined by
approximation errors of the UKF. Such errors arise, for
ample, in the case of polynomial order higher than two if
or h, for which the UKF estimates become biased.

The state and observation equations are not affected
the UKF in any way, unlike as with the EKF~truncated Tay-
lor expansion! and the DD2 filter~truncated Stirling expan
sion! @30#. The only approximation here is to neglect cum
lants of the order higher than two for the densiti
considered. If higher-order cumulants become significa
e.g., for long-tailed or multimodal distributions, the UK
estimates are inconsistent and therefore do not sufficie
reflect the main properties of true dynamics any longer. O
of the main advantages of the UKF is that there is no n
for a computation of derivatives with respect to the sta
This allows for the straightforward use of state space mod
that contain nondifferentiable terms or models where
Jacobian cannot be computed easily. This is often the c
for high-dimensional systems occurring with partial differe
tial equations. The problem of adapting partial different
equations to the state space formalism is treated in the
lowing section.

III. PARAMETER AND STATE ESTIMATION IN
SPATIOTEMPORAL SYSTEMS

A. State space modeling of spatiotemporal systems

The evolution equation of a deterministic and tim
homogeneous spatiotemporal system with only local inte
tions is given by

] tV~r ,t !5F̃~V,r ,l,] r !, ~24!

where V(r ,t)PRDv denotes the system’s state variable,r
5(r 1 ,r 2 , . . . ,r Dr

)8PRDr the spatial coordinate,lPRDl a

parameter vector,t>t1 the time, andF̃ a nonlinear func-
tional. Equation~24!, in conjunction with initial conditions
V(r ,t1) and boundary conditionsV̄(t)5V( r̄ ,t) ( r̄ being the
boundary coordinates of the system!, completely governs the
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spatiotemporal evolution of the variableV(r ,t). This defines
the system’s spatiotemporal trajectory.

Continuous spatiotemporal trajectories cannot be
served, ratherV(r ,t) can be taken at discrete samplin
points. A discrete spatiotemporal trajectory is then a
$Vr ,t% with r5r1 ,r2 , . . . ,rNr

and t5t1 ,t2 , . . . ,tNt
, where

Nr denotes the number of spatial sampling points. For no
tional convenience and with respect to the examples to co
along, the description is reduced to the case of two spa
dimensions,Dr52, i.e.,r i5(r 1,i ,r 2,i)8. Note that the proce-
dure introduced next is valid for three-dimensional system
for example, as well. Instead of indexing each point direc
the more compact writing$Vr ,t% enables us to save indice
and to define the method for arbitrarily shaped regions
space. For example, in some experiments there are obsta
e.g., measurement devices, that would otherwise preve
straightforward indexing of points. What is lost here is th
the neighborhood relationships cannot be seen immedia
anymore, but this will not turn out to be of much importanc

The elements of thepatternat some fixed timet, i.e., the
set$Vr ,t% with r5r1 ,r2 , . . . ,rNr

, may be interpreted as rep

resenting the components of a state vectorSt with dimension
Ds5NrDv . In the following, the words ‘‘pattern’’ and ‘‘state
vector of a pattern’’ are used synonymously.

In order to get the patternSt from the patternSt21, a
numerical integration over time according to Eq.~24! has to
be carried out. If the method of lines~MOL! is used, the state
St is the solution of a system of coupled ordinary different
equations in time,

Ṡ~ t !5F̃MOL~S~ t !,l!. ~25!

With St21 being the initial condition, the discrete state equ
tion thus reads

St5St211E
t21

t

F̃MOL„S~T!,l…dT5:fs~St21 ,l!. ~26!

Considering observations of spatiotemporal trajector
St , an observation equation

Yt5hs~St!1ht ~27!

is added, accounting for indirect and imprecise observatio
Here, ht represents a white noise process,hs :RDs→RDy is
the observation mapping, whereDy again denotes the num
ber of components that are observed~usually Dy<Ds).
Equations~26! and ~27! then correspond to the state spa
model given in Eqs.~5! and ~6!.

B. Partitioned filtering

The state vector of a spatiotemporal problem of even l
dimensionDv turns out to be high dimensional for realist
grid sizes. For example, taking sample points lying on
two-dimensional square grid withNr 1

5Nr 2
560, one has

Nr53600, and withDv52 one obtainsDs57200. There-
fore, the covariance matrix has 523106 entries. This turns
out to be computationally infeasible, since matrix inversio
2-4
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for example, are needed in the UKF update equations
handle this problem, the estimation procedure is reform
lated by an approximative decoupled estimation of an
semble of patches. Patches are defined to be arbitrar
shaped and disjunct sets that constitute the pattern, if pat
together in a way to be specified further. The state of e
patch is denoted bySv,t with v51, . . . ,Np , whereNp is the
number of patches. In analogy to the pattern, the phra
‘‘patch’’ and ‘‘state vector of a patch’’ are used synon
mously in the following. All points that lie outside a patc
are called itsexterior points.

First, an appropriate state equation is constructed for e
patch by the method of lines, i.e., the spatial differential o
erator in Eq.~26! is substituted by a difference scheme. As
result, one gets a system of coupled ordinary differen
equations called, in the following, the ‘‘global state equ
tion.’’ In order to getSv,t , its initial conditionsSv,t21 and
some exterior points are needed.

For example, let us assumeDr52, Dv51, Nr 1
5Nr 2

59 andv51,2, . . . ,9,i.e., a patternSt with Ds581 at some
time t is decomposed into nine patchesS1,t , . . . ,S9,t of equal
sizes and shapes. EachSi ,t again consists of nine elemen
Sr 1,j ,r 2,k ,t , wherej andk indicate their positions. Let us as
sume, furthermore, that only immediate spatial neighbor
points are coupled. In order to get, for example,S5,t from
S5,t21, using a central difference scheme for the approxim
tion of spatial differential operators, the relevant part ofSt
results as is shown in Fig. 1.

The evolution equations for the elements ofS5,t are pro-
vided by a subset of the global state equation that may ut
components of the neighboring patchesS2,t , S4,t , S6,t , and
S8,t . To summarize, the question of a dynamical partiti
corresponds to the issue of how to proceed with these e
rior points.

The simplest partition is given by the exclusion of t
exterior points. This can be accomplished by using nonc
tral spatial difference schemes in the method of lines to so
the partial differential equation. In this case, it is impossi
to benefit from the exterior points as a source of informati
though. It should be better to incorporate exterior inform

FIG. 1. Piece of a partitioned pattern: Thin lines correspond
the grid lines and thick lines mark the boundaries of the respec
patchSi ,t . Grid points needed with the estimation of the patchS5,t

are marked by filled and open circles, the latter being exte
points.
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tion into each local estimation problem. In particular, a po
sible solution is to require the exterior points of each patch
be constantnumericalvalues rather than dynamical variable
during the integration fromt21 to t. In this way, dynamical
decoupling of the patch is achieved while still maintaini
exterior information. The constants are taken to be the c
responding initial values of the neighboring patches, i.e.,
respective components ofS2,t21 , S4,t21 , S6,t21, and S8,t21
in Fig. 1. If the integration fromt21 to t has been performed
for each patch, then the same pattern is obtained as
would get by solving the global state equation. Consequen
in this case not only exterior, but global information is u
lized.

Formally, the exterior points are interpreted as introduc
by an external inputuv,t to the state equation of each patc
One could think of ‘‘controlling’’ the local prediction by
some additional information of exterior points provide
throughuv,t . Thus, the state equation forSv,t of each patch
reads

Sv,t5fv,s~Sv,t21 ,l,uv,t!. ~28!

Analogously, the observation equation for each patch rea

Yv,t5hv,s~Sv,t!1hv,t . ~29!

The predictions for state and observations can then be
dated using the UKF rules~20! and~21!. This procedure has
to be repeated for all patches at timet21 in order to get the
estimated patternŜt5$Ŝ1,t , . . . ,ŜNp ,t%. For patterns pro-
duced by a deterministic system, the estimate of the t
patternvt is given by the meanŝt , while P̂t represents the
associated estimation errors.

The question that arises is: how the patch sizes should
chosen to get good estimation results? It stands to reason
the best estimate would result from solving the global pro
lem, but as mentioned earlier this may be computationa
intractable. Fortunately, due to decreasing spatial coup
strengths with increasing distances of the respective sp
points, certain covariance entries will not contribute much
the signal’s variance, and therefore may be neglected du
the estimation procedure. A statistical measure to quan
the dynamical importance of spatial neighbors can be form
lated in terms of the correlation length. If the spatial sa
pling points of the pattern lie on a quadratic and regular g
the corresponding spatial correlations can be estimated f
given datay5$yt,i , j ,1< i , j <ANr ,1<t<N% by

Ĉk,lª
1

N~Nr21! (
t51

N

(
i , j 51

ANr

~yt,i , j2 ȳt!~yt,i 1k21,j 1 l 212 ȳt!,

~30!

where k,l 51,2, . . . ,ANr , forming the components of the
correlation matrixĈ. The correlation lengths with respect t
each spatial coordinate are then defined as the lags for w
the correlations have decreased by theireth part. Taking into
account the points that lie outside this range of correlat
gives small covariance entries and thus has only minor
fects on the estimation result. Consequently, in order to

o
e

r
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duce the dimensionality while achieving good estimatio
the patch sizes should correspond to the correlation ra
spanned by the correlation lengths.

Thepartitioned filteringallows for an approximation by a
considerable reduction of the overall system’s dimension
ity. For the previous example, the hardly treatable estima
of a system with dimension 81 is reduced to nine estima
problems, each of dimension nine. The partitioned filtering
an approximation to the global filtering problem, since o
does not use the global covariance matrix. Due to the n
linear interactions and the partitioning, an explicit err
analysis seems to be, in general, impossible. Therefore
gain confidence into the results, the applicability of this te
nique should be validated on simulated data before an ap
cation to experimental data is considered.

C. Parameter estimation in partitioned systems

So far a partition technique for state estimation was c
sidered, i.e., the parameter values were known. A poss
way for estimating unknown parameter values is treating
parameter as an additional state space component, as
described for low-dimensional systems in Sec. II A. The
tended state vector of dimensionDx5NrDv1Dl now is

Xv,t5S Sv,t

lv,t
D . ~31!

It will be called juststatein the following.
Since the parameter is treated as a state component,

‘‘dynamics’’ has to be defined. If all patches are of the sa
size and shape, they may be treated as local solutions o
same system but with different initial and boundary con
tions. The parameters estimated within a patch then may
and represent anNp-dimensional ensemble of proposals fro
which the parameter should be chosen. The most likely
rameters with respect to the data follow from the maxim
of the density estimated by the frequency distribution of
proposals. For the sake of simplicity, the ensemble densi
assumed to be symmetric, such that the location of the m
mum is given by its average value. The predicted param
at timet, therefore, is set to be the average of the parame
of all patches at timet21. In state space notation, this rea

Xv,t5S fv,s~Sv,t21 ,lv,t21 ,uv,t!

1

Np
(
ṽ51

Np

lṽ,t21
D , ~32!

Yv,t5hv~Xv,t!1hv,t . ~33!

This section ends with a summary of the proposed meth
given as the following.

~1! Construct a partition.
~2! Construct the extended state vector for each patch
~3! Define the control inputs for the state by taking t

numerical values of the estimates of the respective exte
points one time step before.
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~4! Compute the prediction of each patch. The predic
parameter is obtained by averaging over the ensemble
estimated parameters one time step before.

~5! Compute the update for the extended state of e
patch.

~6! Proceed with step 3 until convergence for the para
eter estimate is reached.

~7! Construct the estimated patterns using the estima
patches. The final parameter estimate is taken to be the
semble average over the parameter estimates.

IV. EXAMPLE

The partitioned filtering method is applied to a tw
dimensional reaction-diffusion system@34–36#. This system
is chosen due to its rich spatiotemporal dynamical beha
and its ability to accurately describe observations in catal
surface reactions@37,38#. If excited, the underlying chemica
system produces concentration differences propaga
through the chemical reactor. Target and spiral patterns
observed as well as spiral defect chaos. The underlying c
plex chemical reaction is simplified to a system of two va
ables, an activatorv1 and an inhibitorv2.

The model is given by

]v1

]t
52

1

c4
v1~v121!S v12

c11v2

c2
D1c3S ]2v1

]r 1
2 1

]2v1

]r 2
2 D ,

~34!

]v2

]t
5g~v1!2v2 , ~35!

with the piecewise defined function

g~v1!5H 0, 0<v1,1/3

126.75v1~v121!2, 1/3<v1<1

1, 1,v1 .

~36!

To solve Eqs.~34! and~35! on a rectangular grid with spatia
sampling stepsDr 50.5 and with periodic boundary cond
tions numerically, the method of lines is used. The Laplac
is approximated by a difference scheme of second-order
curacy. The spatial resolution is chosen to beNr 1

5Nr 2

560, while the parameters are set toc150.07, c250.84,
c351, andc450.08. After the excitation of the system an
omitting a transient phase, 100 consecutive patterns are
corded with a time step ofDt50.04, an example being
shown in Fig. 2: Spiral waves are broken up and form
chaotic pattern for both components of the system.

The inhibitor concentration cannot be observed direc
but its theoretical dynamical behavior including the exa
values of some parameters is known.~Parameter estimation
for the completelyobserved system has been performed
Refs. @10,17#.! Therefore, in this example the typical situa
tion that only the first componentv1 is observed is consid
ered. To simulate possible experimental conditions, it is c
rupted by an additive noise withPh50.01 ~Fig. 3!. The
2-6
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diffusioncoefficientl5c3 is assumed to be unknown. In o
der to provide a partition size, the correlation matrix h
been estimated from data by

Ĉsym5 1
2 ~Ĉ1Ĉ8! ~37!

giving a correlation length of 6~in units of the spatial sam
pling interval!. Compared with Eq.~30!, the estimator given
in Eq. ~37! was slightly modified in order to retain the sy
tem’s isotropic structure, i.e., its invariance against permu
tion of the spatial coordinates.

Therefore, the problem is the following. Estimate the tr
quantitiesv1 , v2, andl from the indirect and noisy obser
vationsy. In terms of state space modeling, this is the sa
as the problem of estimatingX̂t , which has the dimension o
Dx5DvNr1Dl57201.

The estimated statesv1,tN
andv2,tN

are shown for a parti-

tion into patches of size 636 ~Figs. 3 and 4!, corresponding
to the data correlation length of 6. Besides this, this partit
provides the best trade-off between estimation accuracy
computational time. Results concerning other partitions
presented later in this section. The initial state is chosen t
Ŝ1;N( ȳ1•1Ds

,P̂s,1), whereȳ1PR denotes the spatial mea

value of the observed patterny1PRNr, 1Ds
being the unit

column vector of dimensionDs5DvNr . The entries of the
diagonal matrixP̂s,1PRDs3Ds are set to 10. The initial pa
rameter estimate is chosen to be twice the true value, w
the same covariance as the states. The estimated para
l̂ t is the average over the parameter ensemble at timet. The
uncertainty of the final parameter estimatel̂ tN

, i.e., its cova-

FIG. 2. The true patternsv1,tN
andv2,tN

. Abscissa and ordinate
values denote indices of grid points. The gray-scale units are dim
sionless.

FIG. 3. Left: observationytN
. Right: estimated patternv̂1,tN

. The
partition into patches of size 636 is marked by dashed lines. Th
gray-scale units are dimensionless.
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riance, is taken to beP̂tN
5max($P̂v,tN

%v) a rather conserva
tive estimation. Additionally, the convergence of the para
eter estimate is shown in Fig. 4 for two different initia
guesses.

Results obtained for all partitions are summarized
Table I. One observes that the size of the resulting patc
considerably influences the computational time and the e
mation quality. On one hand, small patches worsen the q
ity of pattern estimations, since the global covariance ma
is approximated more crudely. The advantage is that
computational time may be lower. On the other hand, la
patches give better estimates but suffer from increased c
puting time. For the example used here, the quality of patt
and parameter estimates do not differ much for sizes la
than patches with size 636 ~Table I!, while the computation
time grows drastically~Fig. 5!. This confirms the 636 par-
tition as an optimal choice. Note that the dependence
tween the patch size and the computational time is nonmo
tonic; a minimum at intermediate values occurs. The optim
partition with respect to computational time or estimati
accuracy may differ from system to system and the num
cal setup as well.

n- FIG. 4. Left: estimated patternv̂2,tN
. The partition into patches

of size 636 is marked by dashed lines. The gray-scale units

dimensionless. Right: estimated parameterl̂ t for two different ini-
tial guesses. The true parameterl51 is indicated by a dotted line

TABLE I. Estimation and performance results for differe
partitions. The root mean square error Erms

5A@1/(Ds21)#(ŜtN
2StN

)8(ŜtN
2StN

) is a measure for the quality

of the estimated stateŜtN
. Computation timetcomp as measured for

a MATLAB implementation on a 1.5-GHz computer.

Patch
size

No. of
patches tcomp ~s! l̂ tN APl,tN

Erms,v1
Erms,v2

131 3600 1549 1.1173 0.3719 0.0139 0.021
232 900 270 1.0544 0.0948 0.0118 0.024
333 400 162 1.0424 0.0583 0.0114 0.021
434 225 179 1.0380 0.0371 0.0123 0.022
535 144 289 1.0336 0.0222 0.0145 0.022
636 100 593 1.0390 0.0146 0.0110 0.015

10310 36 6636 1.0585 0.076 0.0107 0.012
12312 25 12319 1.0531 0.0064 0.0107 0.012
15315 16 26250 1.0546 0.0037 0.0112 0.012
20320 9 68957 1.0558 0.0026 0.0133 0.012
2-7
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V. DISCUSSION

The method of partitioned filtering for estimating param
eters and unobserved components from partial and noisy
servations of spatiotemporal dynamical systems has bee
troduced. It has been exemplified on simulations of
reaction-diffusion system. Due to the method’s recurs
structure and the newly introduced partition technique,
method works efficiently for systems with several numb
of variables and spatial coordinates. A criterion for t
choice of the partition is provided by means of the corre
tion length of the data, although there may exist syste
where the accuracy may also be good for patches sm
than those determined by the correlation length.

The example has been restricted to a system with a kn
structure and only one unknown parameter in order to p
vent problems with structural identifiability issues, whic
may arise when increasing the number of unknown par
eters. For example, even for linear state space models
known parameters, it may be possible that parts of the s
components are not identifiable; in other words, it is imp

FIG. 5. Left: histogram of the parameter ensemble for the
36 partition att5100. The frequency distribution is approximate
symmetric, justifying the use of the average in order to characte
the most likely parameter. Right: estimated correlation matrix~only
the relevant part is shown!. Axes denote spatial lags~in units of the
spatial sampling step! along the respective spatial coordinate
Gray-scaled units are dimensionless.
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sible to estimate the complete state from partial observatio
This is not a question of the amount of noise but mainly
the system’s structure. For linear systems without spatial
namics, criteria can be formulated that allow for a test
identifiability @39–42#, but there is no concise theory up t
now for nonlinear systems, except for some special clas
such as polynomials or compartment models of certain ty
@43–45#. To the knowledge of the authors, the identifiabili
problem for partial differential equations is yet unsolved.

The here-used particular approach of unscented Kalm
filtering gives minimum mean squared error estimates for
state. When estimating the state and the parameter sim
neously, the resulting estimates for the parameter are opt
for the minimum mean squared error state, which may le
to some bias in the parameter estimates. Furthermore,
unscented Kalman filter can produce biased results for
states where strong nonlinearities are apparent. Only
polynomial nonlinearities up to the second order, it is gu
anteed to yield optimal estimates.

It turns out in the example that the unscented Kalm
filter gives excellent results for even higher-order nonlinea
ties. The reason is that the nonlinearities that arise from
temporal discretization of the dynamics of a time-continuo
system are only weak, unless the time steps are too la
each numerical integration scheme is based on a decom
tion of the dynamics into an identity mapping to which
comparably small correction is added. For large sampl
time steps, where the nonlinearities become more signific
more accurate methods based on Monte Carlo approxi
tions could be used in the here-introduced framework of p
titioned filtering. This will be a topic of further research.
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